资源类型

期刊论文 125

会议视频 2

年份

2023 14

2022 10

2021 10

2020 11

2019 7

2018 11

2017 13

2016 5

2015 5

2014 5

2013 5

2012 3

2011 1

2010 2

2009 2

2008 3

2007 2

2006 3

2005 3

2004 1

展开 ︾

关键词

生产调度 4

优化调度 3

人工智能 2

工业4.0 2

Backbone 1

CPU-GPU异构;多核;共享内存;访存调度 1

HY-2 卫星地面应用系统 1

IEEE 802-16e 1

Lagrangian松弛 1

MapReduce;近似作业;时限;任务调度;掉队任务消除 1

OFDMA 1

QoS 1

TBM 隧洞 1

三维地震勘探 1

三维激发极化法 1

不良地质体 1

业务运行模型 1

中医 1

中医药 1

展开 ︾

检索范围:

排序: 展示方式:

Hybrid genetic algorithm for bi-objective resource-constrained project scheduling

Fikri KUCUKSAYACIGIL, Gündüz ULUSOY

《工程管理前沿(英文)》 2020年 第7卷 第3期   页码 426-446 doi: 10.1007/s42524-020-0100-x

摘要: In this study, we considered a bi-objective, multi-project, multi-mode resource-constrained project scheduling problem. We adopted three objective pairs as combinations of the net present value (NPV) as a financial performance measure with one of the time-based performance measures, namely, makespan ( ), mean completion time (MCT), and mean flow time (MFT) (i.e., min /max , min /max , and min /max ). We developed a hybrid non-dominated sorting genetic algorithm II (hybrid-NSGA-II) as a solution method by introducing a backward–forward pass (BFP) procedure and an injection procedure into NSGA-II. The BFP was proposed for new population generation and post-processing. Then, an injection procedure was introduced to increase diversity. The BFP and injection procedures led to improved objective functional values. The injection procedure generated a significantly high number of non-dominated solutions, thereby resulting in great diversity. An extensive computational study was performed. Results showed that hybrid-NSGA-II surpassed NSGA-II in terms of the performance metrics hypervolume, maximum spread, and the number of non-dominated solutions. Solutions were obtained for the objective pairs using hybrid-NSGA-II and three different test problem sets with specific properties. Further analysis was performed by employing cash balance, which was another financial performance measure of practical importance. Several managerial insights and extensions for further research were presented.

关键词: backward–forward scheduling     hybrid bi-objective genetic algorithm     injection procedure     maximum cash balance     multi-objective multi-project multi-mode resource-constrained project scheduling problem    

Analysis of flow over backward facing step with transition

Dwarikanath RATHA,Arindam SARKAR

《结构与土木工程前沿(英文)》 2015年 第9卷 第1期   页码 71-81 doi: 10.1007/s11709-014-0270-x

摘要: The present study deals with the study of the velocity distribution and the separation phenomenon of flow of air over a two dimensional backward facing step. The flow of air over a backward facing step has been investigated numerically using FLUENT. Flow simulation has been carried out in a backward facing step having an expansion ratio (ratio of the height before and after the step) of 1:1.94 and the results obtained are compared with the published experimental results. Comparison of flow characteristics between steps with three different transitions is made. The variation of reattachment length for all the three cases are analyzed for wide range of Reynolds number ranging from 100 to 7000 which covers the laminar, transition and turbulent flow of air. Simulation of the flow over steps with expansion ratios of 1:1.24, 1:1.38, 1:1.47, 1:1.53, 1:1.94, 1:2.20 are also carried out to examine the effect of different expansion ratios on the reattachment length. It is found that the primary reattachment length increases with increase in the expansion ratio. The primary reattachment length at the bottom wall downstream of the step is minimum for the step with round edged transition and maximum for the step with a vertical drop transition.

关键词: Reattachment length     backward facing step     transition     flow separation     k-? model    

3D finite element method (FEM) simulation of groundwater flow during backward erosion piping

Kristine VANDENBOER,Vera van BEEK,Adam BEZUIJEN

《结构与土木工程前沿(英文)》 2014年 第8卷 第2期   页码 160-166 doi: 10.1007/s11709-014-0257-7

摘要: Backward erosion piping is an important failure mechanism for cohesive water retaining structures which are founded on a sandy aquifer. At present, the prediction models for safety assessment are often based on 2D assumptions. In this work, a 3D numerical approach of the groundwater flow leading to the erosion mechanism of backward erosion piping is presented and discussed. Comparison of the 2D and 3D numerical results explicitly demonstrates the inherent 3D nature of the piping phenomenon. In addition, the influence of the seepage length is investigated and discussed for both piping initiation and piping progression. The results clearly indicate the superiority of the presented 3D numerical model compared to the established 2D approach. Moreover, the 3D numerical results enable a better understanding of the complex physical mechanism involved in backward erosion piping and thus can lead to a significant improvement in the safety assessment of water retaining structures.

关键词: backward erosion piping     groundwater flow     3D finite element method (FEM)    

conservation in China’s coal-fired power industry by installing advanced units and organized phasing out backward

Weiliang WANG, Junfu LYU, Zheng LI, Hai ZHANG, Guangxi YUE, Weidou NI

《能源前沿(英文)》 2019年 第13卷 第4期   页码 798-807 doi: 10.1007/s11708-019-0633-z

摘要: Coal-fired power is the main power source and the biggest contributor to energy conservation in the past several decades in China. It is generally believed that advanced technology should be counted on for energy conservation. However, a review of the decline in the national average net coal consumption rate (NCCR) of China’s coal-fired power industry along with its development over the past few decades indicates that the up-gradation of the national unit capacity structure (including installing advanced production and phasing out backward production) plays a more important role. A quantitative study on the effect of the unit capacity structure up-gradation on the decline in the national average NCCR suggests that phasing out backward production is the leading factor for the decline in the NCCR in the past decade, followed by the new installation, whose sum contributes to approximately 80% of the decline in the national average NCCR. The new installation has an effective affecting period of about 8 years, during which it would gradually decline from a relatively high value. Since the effect of phasing out backward production may remain at a certain degree given a continual action of phasing out backward capacity, it is suggested that the organized action of phasing out backward production should be insisted on.

关键词: coal-fired power     energy conservation     net coal consumption rate     new installation     phasing out backward production     unit capacity structure    

Enhanced permeability and biofouling mitigation of forward osmosis membranes via grafting graphene quantum

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1470-1483 doi: 10.1007/s11705-023-2329-5

摘要: In this paper, graphene oxide quantum dots with amino groups (NH2-GOQDs) were tailored to the surface of a thin-film composite (TFC) membrane surface for optimizing forward osmosis (FO) membrane performance using the amide coupling reaction. The results jointly demonstrated hydrophilicity and surface roughness of the membrane enhanced after grafting NH2-GOQDs, leading to the optimized affinity and the contact area between the membrane and water molecules. Therefore, grafting of the membrane with a concentration of 100 ppm (TFC-100) exhibited excellent permeability performance (58.32 L·m–2·h–1) compared with TFC membrane (16.94 L·m–2·h–1). In the evaluation of static antibacterial properties of membranes, TFC-100 membrane destroyed the cell morphology of Escherichia coli (E. coli) and reduced the degree of bacterial adsorption. In the dynamic biofouling experiment, TFC-100 membrane showed a lower flux decline than TFC membrane. After the physical cleaning, the flux of TFC-100 membrane could recover to 96% of the initial flux, which was notably better than that of TFC membrane (63%). Additionally, the extended Derjaguin–Landau–Verwey–Overbeek analysis of the affinity between pollutants and membrane surface verified that NH2-GOQDs alleviates E. coli contamination of membrane. This work highlights the potential applications of NH2-GOQDs for optimizing permeability and biofouling mitigation of FO membranes.

关键词: forward osmosis membrane     graphene oxide quantum dots     graft modification     anti-fouling membrane     XDLVO theory    

Bisphenol A removal from synthetic municipal wastewater by a bioreactor coupled with either a forward

Hongtao ZHU, Wenna LI

《环境科学与工程前沿(英文)》 2013年 第7卷 第2期   页码 294-300 doi: 10.1007/s11783-013-0486-3

摘要: Forward osmotic membrane bioreactor is an emerging technology that combines the advantages of forward osmosis and conventional membrane bioreactor. In this paper, bisphenol A removal by using a forward osmotic membrane bioreactor and a conventional membrane bioreactor that shared one biologic reactor was studied. The total removal rate of bisphenol A by the conventional membrane bioreactor and forward osmotic membrane bioreactor was as high as 93.9% and 98%, respectively. Biodegradation plays a dominant role in the total removal of bisphenol A in both processes. In comparison of membrane rejection, the forward osmosis membrane can remove approximately 70% bisphenol A from the feed, much higher than that of the microfiltration membrane (below 10%). Forward osmosis membrane bioreactor should be operated with its BPA loading rate under 0.08 mg·g ·d to guarantee the effluent bisphenol A concentration less than10 μg·L .

关键词: forward osmosis     membrane bioreactor     bisphenol A     microfiltration    

A review on the forward osmosis applications and fouling control strategies for wastewater treatment

《化学科学与工程前沿(英文)》 2022年 第16卷 第5期   页码 661-680 doi: 10.1007/s11705-021-2084-4

摘要: During the last decades, the utilization of osmotic pressure-driven forward osmosis technology for wastewater treatment has drawn great interest, due to its high separation efficiency, low membrane fouling propensity, high water recovery and relatively low energy consumption. This review paper summarizes the implementation of forward osmosis technology for various wastewater treatment including municipal sewage, landfill leachate, oil/gas exploitation wastewater, textile wastewater, mine wastewater, and radioactive wastewater. However, membrane fouling is still a critical issue, which affects water flux stability, membrane life and operating cost. Different membrane fouling types and corresponding fouling mechanisms, including organic fouling, inorganic fouling, biofouling and combined fouling are therefore further discussed. The fouling control strategies including feed pre-treatment, operation condition optimization, membrane selection and modification, membrane cleaning and tailoring the chemistry of draw solution are also reviewed comprehensively. At the end of paper, some recommendations are proposed.

关键词: forward osmosis     wastewater treatment     membrane fouling     fouling control    

Fast forward kinematics algorithm for real-time and high-precision control of the 3-RPS parallel mechanism

Yue WANG, Jingjun YU, Xu PEI

《机械工程前沿(英文)》 2018年 第13卷 第3期   页码 368-375 doi: 10.1007/s11465-018-0519-5

摘要:

A new forward kinematics algorithm for the mechanism of 3-RPS (R: Revolute; P: Prismatic; S: Spherical) parallel manipulators is proposed in this study. This algorithm is primarily based on the special geometric conditions of the 3-RPS parallel mechanism, and it eliminates the errors produced by parasitic motions to improve and ensure accuracy. Specifically, the errors can be less than 10-6 . In this method, only the group of solutions that is consistent with the actual situation of the platform is obtained rapidly. This algorithm substantially improves calculation efficiency because the selected initial values are reasonable, and all the formulas in the calculation are analytical. This novel forward kinematics algorithm is well suited for real-time and high-precision control of the 3-RPS parallel mechanism.

关键词: 3-RPS parallel mechanism     forward kinematics     numerical algorithm     parasitic motion    

China Keeps Carrying Forward the Key Special Project of “Air Pollution Causes and Control”

Huan Liu,Kebin He

《环境科学与工程前沿(英文)》 2016年 第10卷 第5期 doi: 10.1007/s11783-016-0881-7

Design of nanofibre interlayer supported forward osmosis composite membranes and its evaluation in fouling

《环境科学与工程前沿(英文)》 2022年 第16卷 第9期 doi: 10.1007/s11783-022-1550-7

摘要:

• A fine fibre (40–60 nm diameter) interlayer (~1 µm thickness) was electrospun.

关键词: Forward osmosis     Electro-spinning     Interfacial polymerisation     Fouling     Polyvinylidene fluoride    

Fertilizer drawn forward osmosis as an alternative to 2nd pass seawater reverse osmosis: Estimation of

《环境科学与工程前沿(英文)》 2021年 第15卷 第6期 doi: 10.1007/s11783-021-1428-0

摘要:

• The boron concentration in diluted DS can satisfy the irrigation water standard.

关键词: Fertilizer drawn forward osmosis (FDFO)     Boron removal     Specific energy consumption (SEC)     Seawater reverse osmosis (SWRO)     Irrigation water production    

“NEW” resource recovery from wastewater using bioelectrochemical systems: Moving forward with functions

Akshay Jain, Zhen He

《环境科学与工程前沿(英文)》 2018年 第12卷 第4期 doi: 10.1007/s11783-018-1052-9

摘要:

Resource recovery from wastewater is a key function of bioelectrochemical systems.

NEW resources to recover include Nutrient, Energy, and Water.

Identifying proper application niches can guide BES research and development.

More efforts should be invested to the application of recovered resources.

A mindset for energy performance and system scaling is critically important.

关键词: Bioelectrochemical systems     Resource recovery     Wastewater treatment     Energy     Nutrients    

Development and challenges of planning and scheduling for petroleum and petrochemical production

Fupei LI, Minglei YANG, Wenli DU, Xin DAI

《工程管理前沿(英文)》 2020年 第7卷 第3期   页码 373-383 doi: 10.1007/s42524-020-0123-3

摘要: Production planning and scheduling are becoming the core of production management, which support the decision of a petrochemical company. The optimization of production planning and scheduling is attempted by every refinery because it gains additional profit and stabilizes the daily production. The optimization problem considered in industry and academic research is of different levels of realism and complexity, thus increasing the gap. Operation research with mathematical programming is a conventional approach used to address the planning and scheduling problem. Additionally, modeling the processes, objectives, and constraints and developing the optimization algorithms are significant for industry and research. This paper introduces the perspective of production planning and scheduling from the development viewpoint.

关键词: planning and scheduling     optimization     modeling    

Lessons learned from developing and implementing refinery production scheduling technologies

Marcel JOLY, Mario Y. MIYAKE

《工程管理前沿(英文)》 2017年 第4卷 第3期   页码 325-337 doi: 10.15302/J-FEM-2017033

摘要: An increasing number of novel and highly specialized computer-aided decision-making technologies for short-term production scheduling in oil refineries has emerged and evolved over the past two decades, thereby encouraging refiners to permanently rethink the way the refining business is operated and managed. In this report, we discuss the key lessons learned from one of the pioneering, yet daring, enterprise-wide programs entirely implemented in an energy company devoted to developing and implementing an advanced refinery production scheduling (RPS) technology, i.e., the RPS system of Petrobras. Apart from mathematical and information technology issues, the long-term sustainability of a successful RPS project is, we argue, the outcome of a virtuous cycle grounded on permanent actions devoted to improving technical education inside the organization, reinspecting organizational cultures and operational paradigms, and developing working processes.

关键词: automation     decision making     oil refinery     optimization     production scheduling    

A deep feed-forward neural network for damage detection in functionally graded carbon nanotube-reinforced

《结构与土木工程前沿(英文)》 2021年 第15卷 第6期   页码 1453-1479 doi: 10.1007/s11709-021-0767-z

摘要: This paper proposes a new Deep Feed-forward Neural Network (DFNN) approach for damage detection in functionally graded carbon nanotube-reinforced composite (FG-CNTRC) plates. In the proposed approach, the DFNN model is developed based on a data set containing 20 000 samples of damage scenarios, obtained via finite element (FE) simulation, of the FG-CNTRC plates. The elemental modal kinetic energy (MKE) values, calculated from natural frequencies and translational nodal displacements of the structures, are utilized as input of the DFNN model while the damage locations and corresponding severities are considered as output. The state-of-the art Exponential Linear Units (ELU) activation function and the Adamax algorithm are employed to train the DFNN model. Additionally, in order to enhance the performance of the DFNN model, the mini-batch and early-stopping techniques are applied to the training process. A trial-and-error procedure is implemented to determine suitable parameters of the network such as the number of hidden layers and the number of neurons in each layer. The accuracy and capability of the proposed DFNN model are illustrated through two distinct configurations of the CNT-fibers constituting the FG-CNTRC plates including uniform distribution (UD) and functionally graded-V distribution (FG-VD). Furthermore, the performance and stability of the DFNN model with the consideration of noise effects on the input data are also investigated. Obtained results indicate that the proposed DFNN model is able to give sufficiently accurate damage detection outcomes for the FG-CNTRC plates for both cases of noise-free and noise-influenced data.

关键词: damage detection     deep feed-forward neural networks     functionally graded carbon nanotube-reinforced composite plates     modal kinetic energy    

标题 作者 时间 类型 操作

Hybrid genetic algorithm for bi-objective resource-constrained project scheduling

Fikri KUCUKSAYACIGIL, Gündüz ULUSOY

期刊论文

Analysis of flow over backward facing step with transition

Dwarikanath RATHA,Arindam SARKAR

期刊论文

3D finite element method (FEM) simulation of groundwater flow during backward erosion piping

Kristine VANDENBOER,Vera van BEEK,Adam BEZUIJEN

期刊论文

conservation in China’s coal-fired power industry by installing advanced units and organized phasing out backward

Weiliang WANG, Junfu LYU, Zheng LI, Hai ZHANG, Guangxi YUE, Weidou NI

期刊论文

Enhanced permeability and biofouling mitigation of forward osmosis membranes via grafting graphene quantum

期刊论文

Bisphenol A removal from synthetic municipal wastewater by a bioreactor coupled with either a forward

Hongtao ZHU, Wenna LI

期刊论文

A review on the forward osmosis applications and fouling control strategies for wastewater treatment

期刊论文

Fast forward kinematics algorithm for real-time and high-precision control of the 3-RPS parallel mechanism

Yue WANG, Jingjun YU, Xu PEI

期刊论文

China Keeps Carrying Forward the Key Special Project of “Air Pollution Causes and Control”

Huan Liu,Kebin He

期刊论文

Design of nanofibre interlayer supported forward osmosis composite membranes and its evaluation in fouling

期刊论文

Fertilizer drawn forward osmosis as an alternative to 2nd pass seawater reverse osmosis: Estimation of

期刊论文

“NEW” resource recovery from wastewater using bioelectrochemical systems: Moving forward with functions

Akshay Jain, Zhen He

期刊论文

Development and challenges of planning and scheduling for petroleum and petrochemical production

Fupei LI, Minglei YANG, Wenli DU, Xin DAI

期刊论文

Lessons learned from developing and implementing refinery production scheduling technologies

Marcel JOLY, Mario Y. MIYAKE

期刊论文

A deep feed-forward neural network for damage detection in functionally graded carbon nanotube-reinforced

期刊论文